Python可视化 | Seaborn5分钟入门(一)——kdeplot和distplot

微信公众号:「Python读财」
如有问题或建议,请公众号留言

Seaborn是基于matplotlib的Python可视化库。 它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,不需要经过大量的调整就能使你的图变得精致。

image

Seaborn的安装

>>>pip install seaborn

安装完Seaborn包后,我们就开始进入接下来的学习啦,首先我们介绍kdeplot的画法。

注:所有代码均是在IPython notebook中实现


 kdeplot(核密度估计图)

核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一。通过核密度估计图可以比较直观的看出数据样本本身的分布特征。具体用法如下:

seaborn.kdeplot(data,data2=None,shade=False,vertical=False,kernel='gau',bw='scott',gridsize=100,cut=3,clip=None,legend=True,cumulative=False,shade_lowest=True,cbar=False, cbar_ax=None, cbar_kws=None, ax=None, kwargs)

我们通过一些具体的例子来学习一些参数的用法:

首先导入相应的库

%matplotlib inline  #IPython notebook中的魔法方法,这样每次运行后可以直接得到图像,不再需要使用plt.show()
import numpy as np  #导入numpy包,用于生成数组
import seaborn as sns  #习惯上简写成snssns.set()           
sns.set()#切换到seaborn的默认运行配置

绘制简单的一维kde图像

x=np.random.randn(100)  #随机生成100个符合正态分布的数sns.kdeplot(x)

image

cut:参数表示绘制的时候,切除带宽往数轴极限数值的多少(默认为3)

sns.kdeplot(x,cut=0)

image

cumulative :是否绘制累积分布

sns.kdeplot(x,cumulative=True)

image

shade:若为True,则在kde曲线下面的区域中进行阴影处理,color控制曲线及阴影的颜色

sns.kdeplot(x,shade=True,color="g")

image

vertical:表示以X轴进行绘制还是以Y轴进行绘制

sns.kdeplot(x,vertical=True)

image

二元kde图像

y=np.random.randn(100)
sns.kdeplot(x,y,shade=True)

image

cbar:参数若为True,则会添加一个颜色棒(颜色帮在二元kde图像中才有)

sns.kdeplot(x,y,shade=True,cbar=True)

image

接下来,我们接着学习功能更为强大的distplot


distplot

displot()集合了matplotlib的hist()与核函数估计kdeplot的功能,增加了rugplot分布观测条显示与利用scipy库fit拟合参数分布的新颖用途。具体用法如下:

seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)

先介绍一下直方图(Histograms):

直方图又称质量分布图,它是表示资料变化情况的一种主要工具。用直方图可以解析出资料的规则性,比较直观地看出产品质量特性的分布状态,对于资料分布状况一目了然,便于判断其总体质量分布情况。直方图表示通过沿数据范围形成分箱,然后绘制条以显示落入每个分箱的观测次数的数据分布。

接下来还是通过具体的例子来体验一下distplot的用法:

sns.distplot(x,color="g")

image

通过histkde参数调节是否显示直方图及核密度估计(默认hist,kde均为True)

import matplotlib.pyplot as pltfig,axes=plt.subplots(1,3) #创建一个一行三列的画布
sns.distplot(x,ax=axes[0]) #左图
sns.distplot(x,hist=False,ax=axes[1]) #中图
sns.distplot(x,kde=False,ax=axes[2]) #右图

imagebins:int或list,控制直方图的划分

fig,axes=plt.subplots(1,2) 
sns.distplot(x,kde=False,bins=20,ax=axes[0]) #左图:分成20个区间
sns.distplot(x,kde=False,bins=[x for x in range(4)],ax=axes[1]) #右图:以0,1,2,3为分割点,形成区间[0,1],[1,2],[2,3],区间外的值不计入。

image

rag:控制是否生成观测数值的小细条

fig,axes=plt.subplots(1,2)
sns.distplot(x,rug=True,ax=axes[0]) #左图
sns.distplot(x,ax=axes[1]) #右图

image

fit:控制拟合的参数分布图形,能够直观地评估它与观察数据的对应关系(黑色线条为确定的分布)

from scipy.stats import *
sns.distplot(x,hist=False,fit=norm) #拟合标准正态分布

image

hist_kws, kde_kws, rug_kws, fit_kws参数接收字典类型,可以自行定义更多高级的样式

sns.distplot(x,kde_kws={"label":"KDE"},vertical=True,color="y")

image

norm_hist:若为True, 则直方图高度显示密度而非计数(含有kde图像中默认为True)

fig,axes=plt.subplots(1,2)
sns.distplot(x,norm_hist=True,kde=False,ax=axes[0]) #左图
sns.distplot(x,kde=False,ax=axes[1]) #右图

image

还有其他参数就不在此一一介绍了,有兴趣继续深入学习的同学可以查看Seaborn的官方文档。以上内容是我结合官方文档和自己的一点理解写成的,有什么错误大家可以指出来并提提意见共同交流、进步,也希望我写的这些能够给阅读完本文的你或多或少带来一点帮助!

关注我的公众号「Python读财」,后台回复「py」即可获取Python学习资源礼包,还有Python学习交流群哦!

公众号二维码.jpg

Image placeholder
zhouqi
未设置
  71人点赞

没有讨论,发表一下自己的看法吧

推荐文章
Python可视化 | Seaborn5分钟入门(三)——boxplot和violinplot

微信公众号:「Python读财」如有问题或建议,请公众号留言Seaborn是基于matplotlib的Python可视化库。它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matp

Python可视化 | Seaborn5分钟入门(四)——stripplot和swarmplot

微信公众号:「Python读财」如有问题或建议,请公众号留言Seaborn是基于matplotlib的Python可视化库。它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matp

Python可视化 | Seaborn5分钟入门(二)——barplot&countplot&pointplot

微信公众号:「Python读财」如有问题或建议,请公众号留言Seaborn是基于matplotlib的Python可视化库。它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matp

Python可视化 | Seaborn5分钟入门(七)——pairplot

微信公众号:「Python读财」如有问题或建议,请公众号留言Seaborn是基于matplotlib的Python可视化库。它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matp

Python可视化 | Seaborn5分钟入门(五)——lmplot

微信公众号:「Python读财」如有问题或建议,请公众号留言Seaborn是基于matplotlib的Python可视化库。它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matp

Python可视化 | Seaborn5分钟入门(六)——heatmap热力图

微信公众号:「Python读财」如有问题或建议,请公众号留言Seaborn是基于matplotlib的Python可视化库。它提供了一个高级界面来绘制有吸引力的统计图形。Seaborn其实是在matp

5分钟带你了解浪潮商用机器FP5466G2服务器

海量数据时代,传统的存储架构已经难以满足大规模高并发下系统稳定性,存储设备的弹性扩展和异构存储资源整合等诸多挑战。浪潮商用机器正是针对复杂而多样化的应用需求和大数据、人工智能等新兴应用场景,全新推出企

那个“炫酷狂拽”的数据可视化利器AntV 11.22版全新发布啦

导读AntV是一个数据可视化项目,也是一个团队,蚂蚁金服数据可视化团队,一群有爱有梦的人,怀揣「让人们在数据世界里获得视觉化思考能力」的梦想前行,希望成就智能时代全球领先的数据可视化解决方案,满足与日

2019值得关注的数据可视化工具TOP5

 数据可视化在数据分析过程中的扮演着非常重要的角色。对于数据科学家或数据分析师来说,以更直观、便于查看、甚至更吸引人的视觉效果来呈现数据是很重要的。数据可视化是一个有效的市场工具,通过这种方式,从海量

智能数据可视化的5个步骤

如今,许多企业正在利用模型、数据分析、数据可视化和仪表板等措施实现数据驱动。例如商业领袖注重提升客户体验,技术领导者注重分析速度和网站指标,应用程序团队在其应用程序中嵌入分析程序等等。这意味着更多的开

基于Pandas+ECharts的金融大数据可视化实现方案

前言最近无意中看到一篇文章,介绍的是在IPythonNotebook里实现ECharts的可视化效果。我个人对ECharts一直是推崇有加,是baidu发布的开源项目中我比较喜欢的一个,绝对是良心之作

可视化的JavaScript:作用域(链)

首先,来看看下面的代码:constname="Lydia" constage=21 constcity="SanFrancisco" functiongetPersonInfo(){ constn

可视化的JavaScript:事件循环

首先,事件循环是什么,为什么要理解它?JavaScript是单线程的:一次只能运行一个任务。通常这没什么大不了的,但现在想象一下我们正在运行一个需要30秒的任务。在这个任务中,我们要等待30秒,然后才

可视化的JavaScript:JavaScript引擎运行原理

JavaScript很酷,但是JavaScript引擎是如何才能理解我们编写的代码呢?作为JavaScript开发人员,我们通常不需要自己处理编译器。然而,了解JavaScript引擎的基础知识并了解

打造高逼格、可视化的Docker容器监控系统平台

关于Docker技术的文章之前也断断续续写了几篇:Docker容器系列文章|Docker技术入门(一)Docker容器系列文章|Docker技术入门(二)Docker容器系列文章|这20个Docker

分享一个可视化开发vue框架下的各类ui的web在线表单设计布局器

新手发帖,第一次不小心刷新了一下就没了本人刚入门vue,偶然间发现这款布局器挺好的,可视化开发element所以分享给大家网站地址:http://lowcode.magicalcoder.c...嵌入

【python测试开发栈】帮你总结python random模块高频使用方法

随机数据在平时写python脚本时会经常被用到,比如随机生成0和1来控制逻辑、或者从列表中随机选择一个元素(其实抽奖程序也类似,就是从公司所有人中随机选择中奖用户)等等。这篇文章,就帮大家整理在pyt

流畅的Python读书笔记 --- 第一章 Python数据模型

近期开始读“流畅的Python”这本书,想把自己的读书笔记分享给大家,希望能帮到也对这本书感兴趣但是没时间看的各位。(文章中大部分的话和图片摘录总结自“流畅的Python”一书,以及python官方网

【python测试开发栈】帮你总结python time模块高频使用方法

在平时写python脚本时,时间是我们经常用到的数据,比如:时间戳、前端展示的对应格式的时间等,在python中主要有三个和时间处理相关的模块:time、datetime、calendar,这篇文章主

4分钟看尽Top编程语言15年沉浮:C#默Java泪,Python终上位!

大数据文摘出品作者:宁静哪种编程语言最火爆?在不同的时代,这个问题也有着不同的答案,而一部编程语言的使用人数变迁史,实际上也是一部计算机世界的成长编年史。一位名叫PYPL的油管up主很尽心地统计了从2

程序员:我终于知道post和get的区别

IT界知名的程序员曾说:对于那些月薪三万以下,自称IT工程师的码农们,其实我们从来没有把他们归为我们IT工程师的队伍。他们虽然总是以IT工程师自居,但只是他们一厢情愿罢了。此话一出,不知激起了多少(码

react和jquery的区别是什么?

首先我们要注意的是,虽然我们这里把React和JQuery拿到一个台面上来说,但是这两者是有本质区别的。React是一个UI库,但是JQuery更多的知识一个工具库或者说是插件库,我们之所以把这两者谈

最适合入门的Python数据分析实战项目

微信公众号:「Python读财」如有问题或建议,请公众号留言伴随着移动互联网的飞速发展,越来越多用户被互联网连接在一起,用户所积累下来的数据越来越多,市场对数据方面人才的需求也越来越大,由此也带火了如

Python 打包——过去、现在与未来

英文|Pythonpackaging-Past,Present,Future【1】原作|BERNATGABOR译者|豌豆花下猫声明:本文获得原作者授权翻译,转载请保留原文出处,请勿用于商业或非法用途。

超8千Star,火遍Github的Python反直觉案例集!

大数据文摘授权转载作者:SatwikKansal译者:暮晨Python,是一个设计优美的解释型高级语言,它提供了很多能让程序员感到舒适的功能特性。但有的时候,Python的一些输出结果对于初学者来说似