八年之痒!除了NLP和CV,人工智能就不能干点别的啥了?

大数据文摘出品

来源:medium

作者:Sergii Shelpuk

编译:王转转、junefish、武帅、钱天培

从2012年AlexNet惊艳亮相开始算起,AI已经经历了将近8年的蓬勃发展期。

这一迅猛发展尤其反映在了AI顶会的参会数据上。2013年,ICML的参会人数仅有数百名,但到了2018年,这一数量上升到了5000多。2019年12月,机器学习领域的最大型的会议NeurIPS更是聚集了13000名AI研究人员和工程师。

大型会议参会人数变动图

AI研究人员的迅速涌入也直接导致了论文数量的爆炸增加。如今,arXiv已有六万多篇AI论文。

2013年,一位AI专家可能会熟悉其子领域中的所有出版物。在2019年,这是不可能的。如今,行业中的绝大多数AI工程师都依赖“最佳论文”和其他简要名单来了解最新成果。

从最开始星辰大海般的探索,到如今研究领域的细分再细分,AI研究似乎也进入了“小修小补”阶段。

那么,AI研究中我们能够解决的重大问题是否已经完全被解决了呢? 下一次的AI大突破是否就要等待新的里程碑式的研究呢?

AI基因研究公司Deeptrait的创始人Sergii Shelpuk认为,我们在这一轮AI发展期中依旧大有可为。

除去自然语言处理和计算机视觉两大领域,我们还有太多领域可以开拓。

下面,我们对Sergii Shelpuk的观点进行了编译整理。

arXiv上AI子类论文数量变动图

首先,让我们来梳理一下如今AI从业者面对一个新问题时的常见心路历程。

以计算机视觉为例,只需看一看图像识别的最新技术,然后选择适合要求的体系结构即可。在比如自然语言处理,如果需要进行情感分析等任务,同样只需浏览有关此问题的出版物,然后选择适用于您的数据,硬件和所需性能的解决方案。

即使现有出版物不存在针对特定问题的解决方案,它也涉及“关于子问题的子问题”。例如,传统的数据增强技术无法给你的数据集带来理想的结果,或者,神经网络在收集到的数据集中表现不佳,亦或是最佳的词语嵌入技术在特定任务情境下表现不佳,等等。

这些年来,人们不断遇到这些关于子问题的子问题,似乎关于AI的所有重大问题都已得到解决,越来越多的针对不断缩小的研究领域的论文的发表更加强化了人们的这种印象。

当我们开始使用DeepTrait开发用于基因组分析的AI系统时,我们查阅了现有文献。我们以为,深度学习的研究者已经详细探讨过所有相关的问题,例如异构数据分析。如今,基因组分析已成为人类研究中最有前途和最重要的领域之一,并且该领域中总共已有6万多篇AI论文发表。研究者们肯定已经完成了相对广泛而深入的工作,不是吗?

但事实证明并不是。在2019年12月12日访问arXiv并搜索“深度学习”,共有22,140篇论文。然而将搜索内容更改为“深度学习基因组”后,发现只有76篇相关的论文,其中许多论文并未解决基因组数据的问题,只是提到基因组是未来潜在的相关应用方向。

在其他论文来源(包括bioRxiv)中搜索有关基因组学的深度学习论文,也就仅有200多篇。其中绝大多数运用的还是过时的神经网络架构和训练技术,另外很大一部分错误地使用了这些工具,例如,将卷积神经网络应用于异构数据(例如SNP),这导致了模型表现不佳。我们发现这样的论文并不在少数。

那些正确使用AI工具的人主要将其应用在分析基因组的较小子序列,例如启动子或蛋白质结合位点。他们的输入数据最长为一到两万个核苷酸。相比之下,拟南芥基因中的核苷酸数量接近1.35亿,而这仅仅是我们在第一次测试中所使用的基因之一。因此,我们没有现成的范例或已有的神经网络架构可供参考,也没有针对这种大小序列的训练技术,完全没有!我们必须从头开始。

大家都在研究什么?

我感到奇怪,因为研究基因组数据具有巨大的潜力。高通量测序可产生大量数据,而AI似乎是理所当然的研究工具。然而,按论文的比例衡量,基因组学只占AI研究关注的1%。

那么剩下的99%在哪里?基因组数据的AI应用显然是一个机遇,如果这样一个宝贵的研究课题都被忽视了,那么也许还有更多研究课题有待探索。

我回到arXiv寻找其他潜在的AI应用方向。例如,现代天文学会生成大量数据:影像数据、射频、带注释的天体(包括天空的最小部分)等。还有可能改变我们对宇宙认知的重大问题,例如“什么是暗物质?”,例如恩里科·费米(Enrico Fermi)所提出的著名问题的“他们都在哪呢?”

利用AI的力量通过分析宇宙中探测到的天文数据来解决这些重要的谜题,应该是一个显而易见的方向,不是吗?

然而现在在arXiv搜索“深度学习暗物质”,却只有20个结果。

接下来是什么?材料科学?现代强化学习模型可以击败围棋和星际争霸2中最好的人类玩家。这些模型的表现如此出色,以至于AlphaGo的胜利被刊登在《自然》杂志上,最近,世界上排名最高的围棋选手李世石选择退役,留下一句话,“AI难以被击败”。(注:李世石的原话是“即使我成为棋手中的第一,我也无法站到顶点了,因为还有一个个体是我无法打败的。”听起来好悲壮o(╥﹏╥)o )

这个消息令人鼓舞,将相同的方法应用于材料科学怎么样?人类已经对物理和化学了解很多。我们可以构建一个模拟器,在其中可以通过强化学习来学习如何自行创建新材料(例如石墨烯)。这些新材料可以创造出新的飞机和舰船,空间升降机,水下站,甚至帮助人类移民到外太空。这应该是一个有趣的研究方向。

然而,arXiv上只有16篇有关“深度学习晶体结构”的论文。

这世界真小

事实证明,几乎所有现代AI研究和工业应用都聚焦于两个子领域中的十几个技术问题:计算机视觉和自然语言处理。

AI创新的反向金字塔

我们可以使用倒金字塔为AI世界建模。每个较低的层级都启发较高的级别模式,对其进行具象化并在某种意义上对其进行定义。

最底层是非常深入的基础科学和技术。它涉及对神经网络,算法优化,统计属性以及这些工具的概率性质的理论理解。

中间存在一个技术层面的问题。这就是我前面提到的十几个技术子问题。对于计算机视觉而言,它们是用于NLP的图像识别,图像分割和图像生成,包括解析,文本分类,机器翻译和问题解答等方面,其中通用语言理解评估(GLUE, General Language Understanding Evaluation)基准很好地代表了后者。

大多数研究人员和行业专家都处于这一级别。当然不是所有的人都专注于涉及GLUE或视觉任务的研究,你可能就是一个例外而不同意我的说法。但是,作为局内人,你可以清楚地明白我们中有多少人处于这个级别之中,又有多少人从事与这份任务清单本身、变形或组合之外的工作。

中间层的界限取决于理论科学底层的发展状况。在底层出现的任何新想法,例如梯度下降,存储单元或卷积滤波器,都可以在技术问题级别实现一系列新动作。

正如理论科学的进步可以实现整个技术领域的扩展一样,解决单个技术问题也可以实现金字塔顶端的一系列工业应用成为可能。

该模型说明了行业的一个基本限制:虽然将产品从技术问题的层次转换到工业应用相对简单,但是反过来则难以实现。将应用程序流程视作一系列单向箭头,如果我们在技术水平上只有一群特定的计算机视觉和自然语言处理工具,那么许多工业应用将无法实现。如果事实是这样,绝大多数人都会这样做。一位需要设计工业应用程序的AI专家最初希望在技术层的某个地方找到答案,但实际上可能会走向更广泛且令人兴奋的技术问题。

走进AI

技术问题和工业化实践的当前状态使得从应用程序到现有技术工具的反向路径几乎难以实现。现有的AI工具箱是为计算机视觉和自然语言处理(NLP)中特定的应用量身定制的,而这些工具越先进,其关注范围就越窄。

以数据的大小为例,在植物基因组学中,我们从拟南芥的1.35亿个字母基因组开始。如果将其按比例成卷打印,一个拟南芥基因组的每个数据点将占用150卷,这还仅仅只是开始。番茄基因组将生成9.5亿个字母文本或1,055卷印刷量,大麦将生成53亿个字母或5,888卷,小麦将生成170亿个字母或18,888卷。当前的NLP无法处理这么大数据量的任何东西,我们目前所有的用于NLP的现代深度学习工具,例如类似变压器的网络,只能处理长达数千个元素的序列。

另一个例子是数据的性质。基因组由四个离散的核苷酸组成,这些核苷酸由四个字母分别表示:A,C,T和G。一个核苷酸的T字母数量不容许出现多一个或者少一个的任何偏差,此外,将单个T更改为其他字母,则可能导致完全不同的表型,致命疾病或致死性疾病。

上述潜在问题都限制了为连续数据开发的计算机视觉技术的使用。将这些数据规模加总,以方形四通道图像表示的人类基因组将具有54,772 x 54,772像素的分辨率,这远远超过了现代计算机视觉神经网络可以处理的分辨率水平。

基因组数据的性质和大小对我们目前所有最先进的深度学习技术提出了挑战,在计算机视觉或NLP领域中迄今还没有可借鉴的神经网络体系或训练实践能够解决上述问题。

天文学,化学,材料科学等数据丰富的学科,都存在着类似的问题:它们无法使用局限于狭窄的计算机视觉和NLP解决方案的现有AI工具集。目前有几种流行的解决方法,例如将十六进制数据转换为图像,调整其大小之后再使用计算机视觉工具等,但它们并没有太大帮助。

在这一点上,那些坚持不懈地寻求解决方案的人别无选择,只能进入人工智能的最深层次,即理论层次。 AI生态系统的这一根源促使了很多发现,包括关于深度神经网络如何工作,不同体系结构如何影响其行为,不同激活功能如何与特定数据分布相互关联等。换句话说,你可以使用这些工具创建自己的工具箱,并应用于你关心的工业程序。

这是一场艰难的旅程,它需要时间,深厚的专业知识,奉献精神和些许运气,但最终,你将在AI生态系统中开发出全新的技术问题层。尽管是为特定的工业应用而构建的,但该新工具集可以很多解决其他问题,例如解决图像识别的技术可以为各种产品和产品原型提供新的思路,从放射学分析到自动驾驶系统例如Tesla Autopilot等都将受益于此。

新技术问题层使一系列新的工业应用成为可能

蓝海

解决计算机视觉和NLP的技术问题是一条非常可靠,可预测和安全的途径。在这些领域有很多研究小组,初创公司和知名公司。专门研究计算机视觉或NLP还可以确保你接触到前沿的工具,包括数据集,GPU技术,框架,以及大量的开源存储库等,这些储存库囊括了示例,库,基准测试和其他有用的资源。好的工具可以减轻我们的工作负担并提高生产力,这也许可以解释为什么AI人才在这两个特定领域中聚集。

另一方面,创造自己的用于天文学,遗传学,化学,材料科学,地球科学或经济学的AI工具箱是一项充满挑战,甚至偶尔令人沮丧的孤独旅程,你只能依靠自己和你的团队。但是,它可以使整个领域收益,足以建立另一个十亿美元级别的公司或一个研究机构。

目前,人类面临着许多至关重要但尚未解决的问题。对于其中的许多问题来说,那些勇敢的先驱们已经收集了多到无法分析的大量数据。他们的目的很简单,收集数据并继续前进。这些数据就在那里,等着人们去发现它的价值,但是有时这需要花费数年的时间。这些问题中还有许多仍未得到解答,因为它们被证明是无法明确解决的。但是,人工智能技术也因此而闻名,因为它能够学习如何破解无法解决的问题。

远离拥挤的人潮,静坐冥思,你会发现整个世界都被AI社区所忽视了。这个世界等待了数十年,翘首以盼那些AI先驱的到来。没有地图,没有线索,它们只把自身的价值送给那些勇于探索并一往无前的人。

相关报道:https://medium.com/towards-artificial-intelligence/the-too-small-world-of-artificial-intelligence-553c0ee05856

Image placeholder
IT头条
未设置
  44人点赞

没有讨论,发表一下自己的看法吧

推荐文章
jsp和css的区别是什么?

jsp是什么?JSP全名为JavaServerPages,中文名叫java服务器页面,是一种动态网页开发技术。它使用JSP标签在HTML网页中插入Java代码;标签通常以结束。JSP技术有点类似ASP

jsp和css的区别?

一、JSPJSP全名为JavaServerPages,他实现了Html语法中的java扩张(以形式)。JSP与Servlet一样,是在服务器端执行的。通常返回给客户端的就是一个HTML文本,因此客户端

深夜生产事故,人工多线程来救场!

有一个读者问我:你认为一个程序员具备什么样的能力,才算得上是厉害的程序员?我答:拥有解决问题的能力的程序员。这个回答貌似有点抽象,不要紧看下面的文章你会慢慢有所了解。 一、解决问题的能力很多年前,当我

Udemy:人工智能是2020年职场最需要的技能之一

TensorFlow是过去三年中最受欢迎的技术技能,根据Udemy的数据在2016年至2019年之间呈指数增长。·除了Web开发框架,云计算和IT认证(包括AWS、CompTIA和Docker)之外,

在网络安全中应用人工智能的五大障碍

国外网络安全公司Cylance发布报告称,人工智能(AI)应用落地的两个最主要障碍是人工智能本身发展不成熟以及应用企业对技术储备的缺乏。人工智能可以有效地帮助网络安全专业人员应对更复杂更危险的威胁,但

人工智能给陌陌直播带来的变革与挑战

中国的人工智能产业相较国外起步较晚,但崛起迅速,尤其是人工智能上升为国家战略以来,更是吸引科技巨头以及众多垂直领域公司深耕不辍。在内容直播领域更是掀起一股强劲的浪潮,毫不夸张地说,AI技术已经成为了内

贫民窟的人工智能

大数据文摘出品编译:Jiaxu、小七、夏雅薇26岁的单身母亲Brenda住在非洲最大的贫民窟基贝拉,这也是全球最贫困的社区之一。每天早上,Brenda从家离开,乘坐公共汽车前往内罗毕东部,和她的100

新突破!人工智能会根据你的声音来预测你的长相

麻省理工学院的研究人员发明了一种新的人工智能,它实现了一项惊人的成就:仅通过分析一个人声音的短片段,它就能重建他们在现实生活中的样子。人工智能的预测结果并不完美,但总的来说还是相当不错的,这项研究也是

5G是一个数据通道,未来最大的产业是人工智能 | 任正非对话卡普兰

大数据文摘出品昨天下午,华为创始人任正非邀请两位人工智能领域的国际顶级专家参与“与任正非咖啡对话”。这已经不是任正非第一次举办这种与行业专家的对话,上一次是在6月17日在与《福布斯》著名撰稿人乔治·吉

为什么说 Python 是人工智能最佳Web开发的语言?

由于所有用户都可以使用大量的预构建库,因此Python非常适合人工智能在Web开发中的应用–但是还有什么能让它变得如此吸引人?在AbsoluteDigitalMedia,我们将仔细研究Python的历

YC中国创始人陆奇:人工智能时代,芯片和底层软件基本都要重做

大数据文摘出品作者:陆奇编辑:周素云2019年5月18日,在YC中国举办的YC中国创业者见面会上,YC中国创始人及首席执行官,YC全球研究院院长陆奇进行了以“技术驱动创新带来的创业机遇”为主题的精彩分

实现人工智能落地 你还差一个“数据分析流水线”的距离

在智慧生产场景,生产制造商可以在生产线上利用深度学习,尤其是图像识别,将产品的质量检测自动化。比如自动检测产品表面有没有划伤、有没有零部件的缺失、有没有标签的错位。研究表明,相比人工检测,智慧检测可以

未来已来,如何减少人工智能带来的风险?

为了在新时代蓬勃发展,企业安全需要减少人工智能带来的风险,并充分利用它提供的机会。人工智能(AI)正在创造信息安全的新领域。能够独立学习、推理和行动的系统将越来越多地复制人类的行为。就像人类一样,他们

知了 | 基于NLP的智能问答推荐系统

作者简介:苗贝贝  百度高级研发工程师负责百度智能运维客服平台ChatOps,在时序数据异常检测、文本模式识别、相似度网络等方向也有广泛的实践经验。干货概览通常,客服系统主要有两种应答模式:机器人自动

SAP CEO孟鼎铭为何在任职十年之际选择退出?

2019年10月11日,SAP宣布执掌时间长达9年多的孟鼎铭(BillMcDermott),将辞去首席执行官职位。公司启动了长期继任者计划,SAP执行董事会成员JenniferMorgan和柯睿安(C

Nginx 之父被抓:Rambler集团声称他工作时间开发了NGINX,要求全部代码所有权

俄罗斯搜索引擎Rambler.ru声称拥有NGINX代码的全部所有权。俄罗斯警方近日突击搜查了F5Networks子公司NGINX的莫斯科办事处,NGINX公司开发了互联网上最受欢迎的Web服务器

bootstrap和vue的区别是什么?

Bootstrap是美国Twitter公司的设计师MarkOtto和JacobThornton合作基于HTML、CSS、JavaScript开发的简洁、直观、强悍的前端开发框架,使得Web开发更加快捷

jsp和html之间有什么区别?

HTML(HypertextMarkupLanguage)文本标记语言,它是静态页面,和JavaScript一样解释性语言,为什么说是解释性语言呢?因为,只要你有一个浏览器那么它就可以正常显示出来,而

基于Go的语义解析开源库FMR,“屠榜”模型外的NLP利器

如何合理地表示语言的内在意义?这是自然语言处理业界中长久以来悬而未决的一个命题。 在2013年分布式词向量表示(DistributedRepresentation)出现之前,one-hot是最常用的

多次问鼎 NuerIPS、MRQA 等国际顶级比赛,百度 NLP 技术到底有多强?

人工智能技术的发展尤其是深度学习技术的成功运用,推动自然语言处理(NLP)进入了高速发展阶段。NLP目前也是应用范围最广的人工智能技术之一,已在智能搜索、智能客服、智能助手、智能推荐等方面得到了大规模

基于Go的语义解析开源库FMR,“屠榜”模型外的NLP利器

(由AI科技大本营付费 下载自视觉中国)作者|刘占亮一览群智技术副总裁编辑|Jane出品|AI科技大本营( ID:rgznai100)如何合理地表示语言的内在意义?这是自然语言处理业界中长久以来悬而未

Java和C语言有什么区别?学哪个语言好就业?

Java和C语言都是现阶段IT行业,说起它们之间的区别还是相当大的。许多编程语言的初学者在学习初期,都会遇到这样的问题,Java和C语言学哪个语言好就业?其实只要你学好其中随意一门,就业就都不会有太大

一文学会Java死锁和CPU 100% 问题的排查技巧

00本文简介作为一名搞技术的程序猿或者是攻城狮,想必你应该是对下面这两个问题有所了解,说不定你在实际的工作或者面试就有遇到过:第一个问题:Java死锁如何排查和解决?第二个问题:服务器CPU占用率高达

html和css难学吗?

什么是HTML?html是HyperTextMark-upLanguage的缩写,即超文本标记语言;html是网页的结构(Structure)。html是用来定义文档内容结构的,包含了用户需要浏览的内

dreamweaver和css的区别是什么?

DreamweaverAdobeDreamweaver,简称“DW”,中文名称"梦想编织者",是美国MACROMEDIA公司开发的集网页制作和管理网站于一身的所见即所得网页编辑器。DW是第一套针对专业