淘宝从几百到千万级并发的十四次架构演进之路!

作者:huashiou

来源:https://segmentfault.com/a/1190000018626163

1. 概述

本文以淘宝为例,介绍从一百个并发到千万级并发情况下服务端的架构的演进过程,同时列举出每个演进阶段会遇到的相关技术,让大家对架构的演进有一个整体的认知,文章最后汇总了一些架构设计的原则。  

2. 基本概念

在介绍架构之前,为了避免部分读者对架构设计中的一些概念不了解,下面对几个最基础的概念进行介绍:

  • 分布式
    系统中的多个模块在不同服务器上部署,即可称为分布式系统,如Tomcat和数据库分别部署在不同的服务器上,或两个相同功能的Tomcat分别部署在不同服务器上
  • 高可用
    系统中部分节点失效时,其他节点能够接替它继续提供服务,则可认为系统具有高可用性
  • 集群
    一个特定领域的软件部署在多台服务器上并作为一个整体提供一类服务,这个整体称为集群。如Zookeeper中的Master和Slave分别部署在多台服务器上,共同组成一个整体提供集中配置服务。在常见的集群中,客户端往往能够连接任意一个节点获得服务,并且当集群中一个节点掉线时,其他节点往往能够自动的接替它继续提供服务,这时候说明集群具有高可用性
  • 负载均衡
    请求发送到系统时,通过某些方式把请求均匀分发到多个节点上,使系统中每个节点能够均匀的处理请求负载,则可认为系统是负载均衡的
  • 正向代理和反向代理
    系统内部要访问外部网络时,统一通过一个代理服务器把请求转发出去,在外部网络看来就是代理服务器发起的访问,此时代理服务器实现的是正向代理。当外部请求进入系统时,代理服务器把该请求转发到系统中的某台服务器上,对外部请求来说,与之交互的只有代理服务器,此时代理服务器实现的是反向代理。简单来说,正向代理是代理服务器代替系统内部来访问外部网络的过程,反向代理是外部请求访问系统时通过代理服务器转发到内部服务器的过程。

3. 架构演进

3.0 单机架构

以淘宝作为例子,在网站最初时,应用数量与用户数都较少,可以把Tomcat和数据库部署在同一台服务器上。

浏览器往www.taobao.com发起请求时,首先经过DNS服务器(域名系统)把域名转换为实际IP地址10.102.4.1,浏览器转而访问该IP对应的Tomcat。如下图所示:

随着用户数的增长,Tomcat和数据库之间竞争资源,单机性能不足以支撑业务

3.1 第一次演进:Tomcat与数据库分开部署

第一次演进没有什么特别的,将 Tomcat 和数据库分别独占服务器资源,显著提高两者各自性能。如下图所示:

随着用户数的增长,并发读写数据库成为瓶颈

3.2 第二次演进:引入本地缓存和分布式缓存

第二次架构演进引入了缓存,在Tomcat服务器上增加本地缓存,并在外部增加分布式缓存,缓存热门商品信息或热门商品的html页面等。

通过缓存能把绝大多数请求在读写数据库前拦截掉,大大降低数据库压力。其中涉及的技术包括:使用memcached作为本地缓存,使用Redis作为分布式缓存,还会涉及缓存一致性、缓存穿透/击穿、缓存雪崩、热点数据集中失效等问题。

演进之后,如下图所示:

缓存抗住了大部分的访问请求,随着用户数的增长,并发压力主要落在单机的Tomcat上,响应逐渐变慢

3.3 第三次演进:引入反向代理实现负载均衡

在多台服务器上分别部署Tomcat,使用反向代理软件(Nginx)把请求均匀分发到每个Tomcat中。

此处假设Tomcat最多支持100个并发,Nginx最多支持50000个并发,那么理论上Nginx把请求分发到500个Tomcat上,就能抗住50000个并发。

其中涉及的技术包括:Nginx、HAProxy,两者都是工作在网络第七层的反向代理软件,主要支持http协议,还会涉及session共享、文件上传下载的问题。

一起来看看使用反向代理之后的架构图:

反向代理使应用服务器可支持的并发量大大增加,但并发量的增长也意味着更多请求穿透到数据库,单机的数据库最终成为瓶颈

3.4 第四次演进:数据库读写分离

把数据库划分为读库和写库,读库可以有多个,通过同步机制把写库的数据同步到读库。

对于需要查询最新写入数据场景,可通过在缓存中多写一份,通过缓存获得最新数据。

其中涉及的技术包括:Mycat,它是数据库中间件,可通过它来组织数据库的分离读写和分库分表,客户端通过它来访问下层数据库,还会涉及数据同步,数据一致性的问题。

读写分离之后的架构图:

业务逐渐变多,不同业务之间的访问量差距较大,不同业务直接竞争数据库,相互影响性能

3.5 第五次演进:数据库按业务分库

数据库按业务分库,把不同业务的数据保存到不同的数据库中,使业务之间的资源竞争降低,对于访问量大的业务,可以部署更多的服务器来支撑。

这样同时导致跨业务的表无法直接做关联分析,需要通过其他途径来解决,但这不是本文讨论的重点,有兴趣的可以自行搜索解决方案。

分库之后的架构图如下所示:

随着用户数的增长,单机的写库会逐渐会达到性能瓶颈

3.6 第六次演进:把大表拆分为小表

比如针对评论数据,可按照商品ID进行hash,路由到对应的表中存储。

针对支付记录,可按照小时创建表,每个小时表继续拆分为小表,使用用户ID或记录编号来路由数据。

只要实时操作的表数据量足够小,请求能够足够均匀的分发到多台服务器上的小表,那数据库就能通过水平扩展的方式来提高性能。其中前面提到的Mycat也支持在大表拆分为小表情况下的访问控制。

这种做法显著的增加了数据库运维的难度,对DBA的要求较高。数据库设计到这种结构时,已经可以称为分布式数据库。

但是这只是一个逻辑的数据库整体,数据库里不同的组成部分是由不同的组件单独来实现的。

比如分库分表的管理和请求分发,由Mycat实现,SQL的解析由单机的数据库实现,读写分离可能由网关和消息队列来实现,查询结果的汇总可能由数据库接口层来实现等等,这种架构其实是MPP(大规模并行处理)架构的一类实现。

目前开源和商用都已经有不少MPP数据库,开源中比较流行的有Greenplum、TiDB、Postgresql XC、HAWQ等,商用的如南大通用的GBase、睿帆科技的雪球DB、华为的LibrA等等。

不同的MPP数据库的侧重点也不一样,如TiDB更侧重于分布式OLTP场景,Greenplum更侧重于分布式OLAP场景。

这些MPP数据库基本都提供了类似Postgresql、Oracle、MySQL那样的SQL标准支持能力,能把一个查询解析为分布式的执行计划分发到每台机器上并行执行,最终由数据库本身汇总数据进行返回。

此外,也提供了诸如权限管理、分库分表、事务、数据副本等能力,并且大多能够支持100个节点以上的集群,大大降低了数据库运维的成本,并且使数据库也能够实现水平扩展。

我们来看拆分小表之后的架构图:

数据库和Tomcat都能够水平扩展,可支撑的并发大幅提高,随着用户数的增长,最终单机的Nginx会成为瓶颈

3.7 第七次演进:使用LVS或F5来使多个Nginx负载均衡

由于瓶颈在Nginx,因此无法通过两层的Nginx来实现多个Nginx的负载均衡。

上图中的LVS和F5是工作在网络第四层的负载均衡解决方案,其中LVS是软件,运行在操作系统内核态,可对TCP请求或更高层级的网络协议进行转发,因此支持的协议更丰富,并且性能也远高于Nginx,可假设单机的LVS可支持几十万个并发的请求转发

F5是一种负载均衡硬件,与LVS提供的能力类似,性能比LVS更高,但价格昂贵。

由于LVS是单机版的软件,若LVS所在服务器宕机则会导致整个后端系统都无法访问,因此需要有备用节点。

我们可使用keepalived软件模拟出虚拟IP,然后把虚拟IP绑定到多台LVS服务器上。

这样浏览器访问虚拟IP时,会被路由器重定向到真实的LVS服务器,当主LVS服务器宕机时,keepalived软件会自动更新路由器中的路由表,把虚拟IP重定向到另外一台正常的LVS服务器,从而达到LVS服务器高可用的效果。

此处需要注意的是,上图中从Nginx层到Tomcat层这样画并不代表全部Nginx都转发请求到全部的Tomcat。

在实际使用时,可能会是几个Nginx下面接一部分的Tomcat,这些Nginx之间通过keepalived实现高可用,其他的Nginx接另外的Tomcat,这样可接入的Tomcat数量就能成倍的增加。

由于LVS也是单机的,随着并发数增长到几十万时,LVS服务器最终会达到瓶颈,此时用户数达到千万甚至上亿级别,用户分布在不同的地区,与服务器机房距离不同,导致了访问的延迟会明显不同

3.8 第八次演进:通过DNS轮询实现机房间的负载均衡

在DNS服务器中可配置一个域名对应多个IP地址,每个IP地址对应到不同的机房里的虚拟IP。

当用户访问www.taobao.com时,DNS服务器会使用轮询策略或其他策略,来选择某个IP供用户访问。此方式能实现机房间的负载均衡

至此,系统可做到机房级别的水平扩展,千万级到亿级的并发量都可通过增加机房来解决,系统入口处的请求并发量不再是问题。

演进之后的架构图如下:

随着数据的丰富程度和业务的发展,检索、分析等需求越来越丰富,单单依靠数据库无法解决如此丰富的需求

3.9 第九次演进:引入NoSQL数据库和搜索引擎等技术

当数据库中的数据多到一定规模时,数据库就不适用于复杂的查询了,往往只能满足普通查询的场景。

对于统计报表场景,在数据量大时不一定能跑出结果,而且在跑复杂查询时会导致其他查询变慢

对于全文检索、可变数据结构等场景,数据库天生不适用。因此需要针对特定的场景,引入合适的解决方案。

如对于海量文件存储,可通过分布式文件系统HDFS解决,对于key value类型的数据,可通过HBase和Redis等方案解决,对于全文检索场景,可通过搜索引擎如ElasticSearch解决,对于多维分析场景,可通过Kylin或Druid等方案解决。

当然,引入更多组件同时会提高系统的复杂度,不同的组件保存的数据需要同步,需要考虑一致性的问题,需要有更多的运维手段来管理这些组件等。

引入NoSQL和搜索引擎的架构图:

引入更多组件解决了丰富的需求,业务维度能够极大扩充,随之而来的是一个应用中包含了太多的业务代码,业务的升级迭代变得困难

3.10 第十次演进:大应用拆分为小应用

按照业务板块来划分应用代码,使单个应用的职责更清晰,相互之间可以做到独立升级迭代。

这时候应用之间可能会涉及到一些公共配置,可以通过分布式配置中心Zookeeper来解决。

架构图如下:

不同应用之间存在共用的模块,由应用单独管理会导致相同代码存在多份,导致公共功能升级时全部应用代码都要跟着升级

3.11 第十一次演进:复用的功能抽离成微服务

如用户管理、订单、支付、鉴权等功能在多个应用中都存在,那么可以把这些功能的代码单独抽取出来形成一个单独的服务来管理,这样的服务就是所谓的微服务

应用和服务之间通过HTTP、TCP或RPC请求等多种方式来访问公共服务,每个单独的服务都可以由单独的团队来管理。

此外,可以通过Dubbo、SpringCloud等框架实现服务治理、限流、熔断、降级等功能,提高服务的稳定性和可用性。

不同服务的接口访问方式不同,应用代码需要适配多种访问方式才能使用服务,此外,应用访问服务,服务之间也可能相互访问,调用链将会变得非常复杂,逻辑变得混乱

3.12 第十二次演进:引入企业服务总线ESB屏蔽服务接口的访问差异

通过ESB统一进行访问协议转换,应用统一通过ESB来访问后端服务,服务与服务之间也通过ESB来相互调用,以此降低系统的耦合程度。

这种单个应用拆分为多个应用,公共服务单独抽取出来来管理,并使用企业消息总线来解除服务之间耦合问题的架构,就是所谓的SOA(面向服务)架构,这种架构与微服务架构容易混淆,因为表现形式十分相似。

个人理解,微服务架构更多是指把系统里的公共服务抽取出来单独运维管理的思想,而SOA架构则是指一种拆分服务并使服务接口访问变得统一的架构思想,SOA架构中包含了微服务的思想。

来看看演进之后的架构图:

业务不断发展,应用和服务都会不断变多,应用和服务的部署变得复杂,同一台服务器上部署多个服务还要解决运行环境冲突的问题,此外,对于如大促这类需要动态扩缩容的场景,需要水平扩展服务的性能,就需要在新增的服务上准备运行环境,部署服务等,运维将变得十分困难

3.13 第十三次演进:引入容器化技术实现运行环境隔离与动态服务管理

目前最流行的容器化技术是Docker,最流行的容器管理服务是Kubernetes(K8S),应用/服务可以打包为Docker镜像,通过K8S来动态分发和部署镜像。

Docker镜像可理解为一个能运行你的应用/服务的最小的操作系统,里面放着应用/服务的运行代码,运行环境根据实际的需要设置好。

把整个“操作系统”打包为一个镜像后,就可以分发到需要部署相关服务的机器上,直接启动Docker镜像就可以把服务起起来,使服务的部署和运维变得简单。

在大促之前,可以在现有的机器集群上划分出服务器来启动Docker镜像,增强服务的性能。大促过后就可以关闭镜像,对机器上的其他服务不造成影响

使用容器化技术后服务动态扩缩容问题得以解决,但是机器还是需要公司自身来管理,在非大促的时候,还是需要闲置着大量的机器资源来应对大促,机器自身成本和运维成本都极高,资源利用率低

3.14 第十四次演进:以云平台承载系统

系统可部署到公有云上,利用公有云的海量机器资源,解决动态硬件资源的问题。

在大促的时间段里,在云平台中临时申请更多的资源,结合Docker和K8S来快速部署服务。

在大促结束后释放资源,真正做到按需付费,资源利用率大大提高,同时大大降低了运维成本。

所谓的云平台,就是把海量机器资源,通过统一的资源管理,抽象为一个资源整体。

在云平台之上可按需动态申请硬件资源(如CPU、内存、网络等),并且云平台之上提供通用的操作系统,提供常用的技术组件(如Hadoop技术栈,MPP数据库等)供用户使用,甚至提供开发好的应用。

用户不需要关系应用内部使用了什么技术,就能够解决需求(如音视频转码服务、邮件服务、个人博客等)。

在云平台中会涉及如下几个概念:

  • IaaS:基础设施即服务。对应于上面所说的机器资源统一为资源整体,可动态申请硬件资源的层面;
  • PaaS:平台即服务。对应于上面所说的提供常用的技术组件方便系统的开发和维护;
  • SaaS:软件即服务。对应于上面所说的提供开发好的应用或服务,按功能或性能要求付费。

至此,以上所提到的从高并发访问问题,到服务的架构和系统实施的层面都有了各自的解决方案。

但同时也应该意识到,在上面的介绍中,其实是有意忽略了诸如跨机房数据同步、分布式事务实现等等的实际问题,这些问题以后有机会再拿出来单独讨论

4. 架构设计总结 & 思考

接下来,我们来讨论一下关于架构设计的一些问题:

  • 架构的调整是否必须按照上述演变路径进行?
    否!以上所说的架构演变顺序只是针对某个侧面进行单独的改进,在实际场景中,可能同一时间会有几个问题需要解决,或者可能先达到瓶颈的是另外的方面,这时候就应该按照实际问题实际解决。举个例子,比如在政府类的并发量可能不大,但业务可能很丰富的场景,高并发就不是重点解决的问题,此时优先需要的可能会是丰富需求的解决方案。
  • 对于将要实施的系统,架构应该设计到什么程度?
    对于单次实施并且性能指标明确的系统,架构设计到能够支持系统的性能指标要求就足够了,但要留有扩展架构的接口以便不备之需。对于不断发展的系统,如电商平台,应设计到能满足下一阶段用户量和性能指标要求的程度,并根据业务的增长不断的迭代升级架构,以支持更高的并发和更丰富的业务。
  • 服务端架构和大数据架构有什么区别?
    所谓的“大数据”其实是海量数据采集清洗转换、数据存储、数据分析、数据服务等场景解决方案的一个统称,在每一个场景都包含了多种可选的技术。比如数据采集有Flume、Sqoop、Kettle等,数据存储有分布式文件系统HDFS、FastDFS,NoSQL数据库HBase、MongoDB等,数据分析有Spark技术栈、机器学习算法等。总的来说大数据架构就是根据业务的需求,整合各种大数据组件组合而成的架构,一般会提供分布式存储、分布式计算、多维分析、数据仓库、机器学习算法等能力。而服务端架构更多指的是应用组织层面的架构,底层能力往往是由大数据架构来提供。
  • 有没有一些架构设计的原则?
    • N+1设计。系统中的每个组件都应做到没有单点故障;
    • 回滚设计。确保系统可以向前兼容,在系统升级时应能有办法回滚版本;
    • 禁用设计。应该提供控制具体功能是否可用的配置,在系统出现故障时能够快速下线功能;
    • 监控设计。在设计阶段就要考虑监控的手段;
    • 多活数据中心设计。若系统需要极高的高可用,应考虑在多地实施数据中心进行多活,至少在一个机房断电的情况下系统依然可用;
    • 采用成熟的技术。刚开发的或开源的技术往往存在很多隐藏的bug,出了问题没有商业支持可能会是一个灾难;
    • 资源隔离设计。应避免单一业务占用全部资源;
    • 架构应能水平扩展。系统只有做到能水平扩展,才能有效避免瓶颈问题;
    • 非核心则购买。非核心功能若需要占用大量的研发资源才能解决,则考虑购买成熟的产品;
    • 使用商用硬件。商用硬件能有效降低硬件故障的机率;
    • 快速迭代。系统应该快速开发小功能模块,尽快上线进行验证,早日发现问题大大降低系统交付的风险;
    • 无状态设计。服务接口应该做成无状态的,当前接口的访问不依赖于接口上次访问的状态。
Image placeholder
IT头条
未设置
  54人点赞

没有讨论,发表一下自己的看法吧

推荐文章
用户从0到5亿,中国移动 OneLink 架构演进之路

导语本文根据范良泽老师在2019年10月31日【第十一届中国系统架构师大会(SACC)】现场演讲内容整理而成。范良泽(中移物联网有限公司系统架构专家)2008年毕业于上海交通大学,曾供职于华为、Ope

数字转型 架构演进 2019中国系统架构师大会盛大召开

2019年10月31日~11月2日,由IT168旗下ChinaUnix社区主办的第十一届中国系统架构师大会(SACC2019)在北京隆重召开。自2009年举办以来,大会云集了国内CTO、研发总监、高级

从网络接入层到 Service Mesh,蚂蚁金服网络代理的演进之路

本文作者:肖涵(涵畅)上篇文章《 诗和远方:蚂蚁金服ServiceMesh深度实践|QCon实录》中, 介绍了ServiceMesh在蚂蚁金服的落地情况和即将来临的双十一大考,帮助大家了解Servic

深度解读当代前端架构演进与趋势(上)

软件架构的核心思想,就是推断软件系统各个组件之间数据流动的方式。软件架构的质量取决于你设法推断这些数据流的难易程度!本文要讲的内容,就是在今天的Web应用程序背后探索这些数据流和最终的体系结构。We

来SACC2019共论“数字转型 架构演进”之道

2019已经过半,第十一届中国系统架构师大会SACC2019的脚步也越来越近了,十年来中国系统架构师大会SACC一直紧跟系统架构关键技术热点,成为架构师、CTO、CIO以及各研发人员学习交流的前沿阵地

滴滴 NewSQL 演进之 Fusion 实践

本文根据滴滴数据库存储专家余汶龙,在DTCC中国第十届数据库大会的演讲整理而成。余汶龙滴滴出行技术专家,曾经在VMware、淘宝、阿里云从事虚拟网络及存储领域的工作。现负责滴滴自研的NoSQL存储、N

揭秘|每秒千万级的实时数据处理是怎么实现的?

01背景闲鱼目前实际生产部署环境越来越复杂,横向依赖各种服务盘宗错节,纵向依赖的运行环境也越来越复杂。当服务出现问题的时候,能否及时在海量的数据中定位到问题根因,成为考验闲鱼服务能力的一个严峻挑战。线

微博广告策略工程架构体系演进

概述 1.广告样式与场景 上图是微博广告目前商业场景流,“一屏四大流”。“一屏”指打开微博的Fashion,“四大流”指占据微博商业化的主体,包括关系信息流、热门流、评论流和热搜流。右图为广告投放的

一个多业务、多状态、多操作的交易链路?闲鱼架构这样演进

前言双十一刚刚结束,成交额2684亿震惊全世界,每秒订单峰值达54.4W笔。在闲鱼2000万DAU,交易数额同样增长迅速的今天,我们如何保障交易链路的稳定与快速支撑业务?这篇文章从客户端开发的角度,介

大神讲解微服务治理的技术演进和架构实践

摘要:随着业务的发展,规模扩大,服务越来越多,需要协调线上运行的各个服务,保障服务的SLA;基于服务调用的性能KPI数据进行容量管理,合理分配各服务的资源占用;对故障业务做服务降级、流量控制、流量迁移

阿里支付宝架构师:谈谈我眼中的高并发架构【好文】

来源:my.oschina.net/u/3772106/blog/1793561前言高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等。为了让业务可以流畅的运行并且

架构师眼中的高并发架构

前言高并发经常发生在有大活跃用户量和用户高聚集的业务场景中,如:秒杀活动、定时领取红包等。为了让业务可以流畅的运行并且给用户一个好的交互体验,我们需要根据业务场景预估达到的并发量等因素,来设计适合自己

Spring Boot 中关于自定义异常处理的套路!

在SpringBoot项目中,异常统一处理,可以使用Spring中@ControllerAdvice来统一处理,也可以自己来定义异常处理方案。SpringBoot中,对异常的处理有一些默认的策略,我们

SACC 2019:云闪付APP架构优化实践之路

中国银联科技事业部架构师 程朝程朝2011年加入中国银联,拥有三年应用开发设计经验,三年MySQL与Redis内核开发设计经验,三年应用架构设计经验;擅长分布式系统设计,有丰富的系统设计与调优经验,现

硬核盘点,华为面向开发者的十大技术

随着社会的发展,科技的进步,5G落地、AI爆发、大数据持续突破、云计算已然成为新时代的水电煤。日益增多的新兴技术,为开发者带来机遇的同时也带来了不少挑战。尽管开发者们经常身处历史性事件的前沿,但由于

程序员常用的十款开发工具推荐

工欲善其事必先利其器。对于程序员来讲,好用的开发工具可以大大提高开发效率。本文将向大家推荐程序员常用的十款开发工具,希望能帮助大家更加优雅地写出代码。这些工具分别是Arthas、ChaosBlade、

最流行的十大开源云监控工具

Linux系统在企业中的应用程度已经非常广泛,人们听到过太多关于Docker和Kubernetes的消息,以至于忘记了监控和日志记录也是同样重要的任务。Docker持续发展,随之而来的是围绕它构建的服

我的十年程序生涯:建模启航

我是一个有魄力的人!我是一个有魄力的人!请大家记住这句话,只有记住这句话,你才能明白我这十年间的选择。十年前我还是象牙塔中数学系的一名普通的大三学生。六年前我包里揣着3000块钱来北漂。三年前我在一家

MySQL 百万级数据量分页查询方法及其优化

作者|大神养成记原文|  http://t.cn/RnvCJnm方法1:直接使用数据库提供的SQL语句语句样式: MySQL中,可用如下方法:SELECT*FROM表名称LIMITM,N适应场景: 适

披荆斩棘:论百万级服务器反入侵场景的混沌工程实践

在繁杂的业务和网络环境下,在公司百万级服务器面前,要做到入侵发生时的及时检测,那么反入侵系统的有效性,即系统质量,是至关重要的。洋葱系统是腾讯公司级的主机反入侵安全检测系统,它是实现了前端主机agen

【搞定 Java 并发面试】面试最常问的 Java 并发基础常见面试题总结!

Java并发基础常见面试题总结 1.什么是线程和进程? 1.1.何为进程? 进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。

Go语言高级编程_1.5 面向并发的内存模型

1.5面向并发的内存模型 在早期,CPU都是以单核的形式顺序执行机器指令。Go语言的祖先C语言正是这种顺序编程语言的代表。顺序编程语言中的顺序是指:所有的指令都是以串行的方式执行,在相同的时刻有且仅有

老程序员肺腑忠告:千万别一辈子靠技术生存!

作为一个多年开发经验的老伙计,当回过头来想一想自己,觉得特别想对那些初学JAVA/DOT、NET技术的朋友说点心里话,希望你们能从我们的体会中,多少受点启发。 1一个程序员正确的自我心态究竟是什么样?

千万不要和女程序员做同事!否则你会爱上她

如果说,每个程序员都是格子衫的化身,那么,每个女程序员,早已不需要格子衫作为职业铠甲。随身带电脑是必修课,手机装VPN是安全感,写Bug时要风轻云淡,打断点就要像打粉底。我,一枚长期浸淫在IT圈、敲代

万字详解Oracle架构、原理、进程,学会世间再无复杂架构

学习是一个循序渐进的过程,从面到点、从宏观到微观,逐步渗透,各个击破,对于Oracle, 怎么样从宏观上来理解呢?先来看一个图,这个图取自于教材,这个图对于从整体上理解ORACLE 的体系结构组件,非