Nebula 架构剖析系列(二)图数据库的查询引擎设计

摘要

上文(存储篇)说到数据库重要的两部分为存储和计算,本篇内容为你解读图数据库 Nebula 在查询引擎 Query Engine 方面的设计实践。

在 Nebula 中,Query Engine 是用来处理 Nebula 查询语言语句(nGQL)。本篇文章将带你了解 Nebula Query Engine 的架构。

上图为查询引擎的架构图,如果你对 SQL 的执行引擎比较熟悉,那么对上图一定不会陌生。Nebula 的 Query Engine 架构图和现代 SQL 的执行引擎类似,只是在查询语言解析器和具体的执行计划有所区别。

Session Manager

Nebula 权限管理采用基于角色的权限控制(Role Based Access Control)。客户端第一次连接到 Query Engine 时需作认证,当认证成功之后 Query Engine 会创建一个新 session,并将该 session ID 返回给客户端。所有的 session 统一由 Session Manger 管理。session 会记录当前 graph space 信息及对该 space 的权限。此外,session 还会记录一些会话相关的配置信息,并临时保存同一 session 内的跨多个请求的一些信息。

客户端连接结束之后 session 会关闭,或者如果长时间没通信会切为空闲状态。这个空闲时长是可以配置的。 
客户端的每个请求都必须带上此 session ID,否则 Query Engine 会拒绝此请求。

Storage Engine 不管理 session,Query Engine 在访问存储引擎时,会带上 session 信息。

Parser

Query Engine 解析来自客户端的 nGQL 语句,分析器(parser)主要基于著名的 flex / bison 工具集。字典文件(lexicon)和语法规则(grammar)在 Nebula 源代码的 src/parser 目录下。设计上,nGQL 的语法非常接近 SQL,目的是降低学习成本。 图数据库目前没有统一的查询语言国际标准,一旦 ISO/IEC 的图查询语言(GQL)委员会发布 GQL 国际标准,nGQL 会尽快去实现兼容。 
Parser 构建产出的抽象语法树(Abstrac Syntax Tree,简称 AST)会交给下一模块:Execution Planner。

Execution Planner

执行计划器(Execution Planner)负责将抽象树 AST 解析成一系列执行动作 action(可执行计划)。action 为最小可执行单元。例如,典型的 action 可以是获取某个节点的所有邻节点,或者获得某条边的属性,或基于特定过滤条件筛选节点或边。当抽象树 AST 被转换成执行计划时,所有 ID 信息会被抽取出来以便执行计划的复用。这些 ID 信息会放置在当前请求 context 中,context 也会保存变量和中间结果。

Optimization

经由 Execution Planner 产生的执行计划会交给执行优化框架 Optimization,优化框架中注册有多个 Optimizer。Optimizer 会依次被调用对执行计划进行优化,这样每个 Optimizer都有机会修改(优化)执行计划。最后,优化过的执行计划可能和原始执行计划完全不一样,但是优化后的执行结果必须和原始执行计划的结果一样的。

Execution

Query Engine 最后一步是去执行优化后的执行计划,这步是执行框架(Execution Framework)完成的。执行层的每个执行器一次只处理一个执行计划,计划中的 action 会挨个一一执行。执行器也会一些有针对性的局部优化,比如:决定是否并发执行。针对不同的 action所需数据和信息,执行器需要经由 meta service 与storage engine的客户端与他们通信。

最后,如果你想尝试编译一下 Nebula 源代码可参考如下方式:

有问题请在 GitHub(GitHub 地址: https://github.com/vesoft-inc/nebula) 或者微信公众号上留言,也可以添加 Nebula 小助手微信号:NebulaGraphbot 为好友反馈问题~

推荐阅读

Image placeholder
dragoncar
未设置
  98人点赞

没有讨论,发表一下自己的看法吧

推荐文章
TPC-C解析系列04_TPC-C基准测试之数据库事务引擎的挑战

OceanBase这次TPC-C测试与榜单上Oracle和DB2等其他数据库在硬件使用上有非常大的不同,OceanBase的数据库服务器使用的是204+3台型号是ecs.i2.16xlarge阿里云E

BAT大牛推荐开发人员必备Spring源码剖析文档,深度剖析Spring

为什么学习读源码我们每天都和代码打交道。经过数年的基础教育和职业培训,大部分程序员都会「写」代码,或者至少会抄代码和改代码。但是,会读代码的并不在多数,会读代码又真正读懂一些大项目的源码的,少之又少。

MySQL 亿级数据数据库优化方案测试-银行交易流水记录的查询

作者:逸宸a链接:https://www.jianshu.com/p/cbdef47fb837对MySQL的性能和亿级数据的处理方法思考,以及分库分表到底该如何做,在什么场景比较合适?比如银行交易流水

学习 nodejs+mongodb+koa2 写接口(二) koa2教程入门

一.hellokoa安装koa2#初始化package.json npminit #安装koa2 npminstallkoahelloworld代码constKoa=require('koa') c

闲鱼Flutter互动引擎系列——整体设计篇

什么是Candy引擎Candy引擎是闲鱼技术团队设计开发的一款:APP嵌入式的、轻量级的、易于开发、性能稳定的互动引擎;绘制系统高度融合Flutter体系,游戏场景和FlutterUI支持无缝混排;动

TPC-C解析系列03_TPC-C基准测试之SQL优化

TPC-C是一个非常严苛的基准测试模型,考验的是一个完备的关系数据库系统全链路的能力。这也是为什么在TPC-C的榜单前列,出现的永远只是大家熟知的那几家在业界有着几十年积累、从关系数据库理论开始发展就

TPC-C解析系列05_TPC-C基准测试之存储优化

TPC-C规范要求被测数据库的性能(tpmC)与数据量成正比。TPC-C的基本数据单元是仓库(warehouse),每个仓库的数据量通常在70MB左右(与具体实现有关)。TPC-C规定每个仓库所获得的

TPC-C解析系列01_TPC-C benchmark测试介绍

作者:阳振坤2019.10导语:自从蚂蚁金服自研数据库OceanBase获得TPC-C测试第一名后,引起了行业内外大量关注,我们衷心的感谢大家对OceanBase的支持与厚爱,也虚心听取外界的意见和建

TPC-C解析系列02_OceanBase如何做TPC-C测试

导语:蚂蚁金服自研数据库OceanBase登顶TPC-C引起业内广泛关注,为了更清楚的展示其中的技术细节,我们特意邀请OceanBase核心研发人员对本次测试进行技术解读,共包括五篇:1)TPC-C基

leveldb源代码分析系列1:MemTable的实现

MemTable及其实现这是一个第零层的主题,预计扩展如下第一层主题:1.1comparator介绍1.2skiplist实现介绍1.3数据压缩相关介绍1.4Put流程1.5Get流程leveldb中

leveldb源代码分析系列1.1:memtable中comparator的实现

leveldb中memtable封装了一个skiplist用来存储真正的数据,跳跃列表的实现一定需要定义存储项的序关系,而在leveldb中这个序关系通过comparator相关类来实现。leveld

leveldb源代码分析系列1.2:skiplist实现

skiplist的实现介绍leveldb中的SkipList是一个模板类,其模板参数的类型分别是存储的Key类型和Comparator类型。虽然名字是Key类型,但其实存储了整个entry,只不过Co

Spring WebFlux 的设计及工作原理剖析

前言 Spring5发布有两年了,随Spring5一起发布了一个和SpringWebMvc同级的SpringWebFlux。这是一个支持反应式编程模型的新框架体系。反应式模型区别于传统的MVC最大的不

如何保证缓存与数据库的双写一致性?

分布式缓存是现在很多分布式应用中必不可少的组件,但是用到了分布式缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题?CacheAsidePa

合理建立Hadoop数据库的7个步骤

数据湖的概念起源于大数据的出现——且数据已成为企业的核心资产,Hadoop则是作为存储和管理数据的平台而出现。但是,盲目地投入Hadoop数据湖建设并不一定会使您的企业进入大数据时代——至少不是以一种

中兴数据库的决心

摘要:在数据库方面,中兴有着17年的相关技术积累储备,早在2002年,中兴就启动了数据库相关技术的研发,最近5年,中兴更是加强数据库投入,累计投入10个亿。目前,中兴拥有一支超过500人的数据库研发团

时序数据库的秘密 —— 快速检索

Elasticsearch是通过Lucene的倒排索引技术实现比关系型数据库更快的过滤。特别是它对多条件的过滤支持非常好,比如年龄在18和30之间,性别为女性这样的组合查询。倒排索引很多地方都有介绍,

面试官问:请介绍一下MySQL数据库的锁机制?

为什么要加锁问题背景当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性。要解决的问题多用户环境下保证数

阿里面试题:如何保证缓存与数据库的双写一致性?

作者:你是我的海啸出处:https://blog.csdn.net/chang384915878/article/details/86756463只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只

DTCC观察:华为云数据库的优势积累与技术选择

摘要:作为公有云市场的重磅参与者,华为云数据库相比竞争对手有哪些优势?这可能是很多不了解华为云数据库人的第一反应。华为云数据库产品架构如何布局?作为第一个基于MySQL8.0开发的云原生分布式数据库,

腾讯林晓斌:数据库的高易用性如何实现?

腾讯云基于QQ、微信、腾讯游戏等海量业务的技术锤炼,从基础架构到精细化运营,从平台实力到生态能力建设,腾讯云将之整合并面向市场,使之能够为企业和创业者提供集云计算、云数据、云运营于一体的云端服务体验。

盘点2019:对国产数据库的一点观察和总结

“想,都是问题,做,才有答案”—–华东师范大学副校长、CCF数据库专委会副主任周傲英。之所以开篇引用周教授这句话,是因为笔者觉得,这短短10个字,是对国产数据库发展的最好诠释。中国能否翻越数据库这座大

Elasticsearch 与传统关系型数据库的对比、倒排索引原理解析

Elasticsearch和传统关系型数据库的对比Elasticsearch中的概念与关系型数据库对比 RelationalDB Databases Tables Rows Columns 关系

0107 spring操作数据库的3个架子

背景数据库开发是java的核心内容之一,基础就是jdbc了;然而直接使用jdbc,需要写大量的try-catch-finally模板代码;管理系统使用hibernate作为orm框架比较方便,遵循jp

SQL Server 2014的数据库引擎新增功能(参考sqlserver官方文档)

SQLServer2014数据库引擎引入了一些新功能和增强功能,这些功能可以提高设计、开发和维护数据存储系统的架构师、开发人员和管理员的能力和工作效率。  以下是 数据库引擎已增强的方面。数据库引擎功