菜单 学习猿地 - LMONKEY

VIP

开通学习猿地VIP

尊享10项VIP特权 持续新增

知识通关挑战

打卡带练!告别无效练习

接私单赚外块

VIP优先接,累计金额超百万

学习猿地私房课免费学

大厂实战课仅对VIP开放

你的一对一导师

每月可免费咨询大牛30次

领取更多软件工程师实用特权

入驻
344
0

Multigrid Method - Python实现

原创
05/13 14:22
阅读数 9046
  • 算法特征:
    ①. pre-smoothing提取低频残差; ②. 向下插值计算残差补偿; ③.向上插值填充残差补偿; ④. post-smoothing降低整体残差
  • 算法推导:
    Part Ⅰ: 算法原理
    考虑一般线性系统:
    \begin{equation}
    Ax = b
    \label{eq_1}
    \end{equation}
    给定某初始值$x^{0}$, 残差为:
    \begin{equation}
    r^{0} = b - Ax^{0}
    \label{eq_2}
    \end{equation}
    以该残差为基础, 计算残差补偿:
    \begin{equation}
    \delta x^{0} = A^{-1}r^{0}
    \label{eq_3}
    \end{equation}
    填充残差补偿, 式(\ref{eq_1})解表示如下:
    \begin{equation}
    x = x^{0} + \delta x^{0}
    \label{eq_4}
    \end{equation}
    Part Ⅱ: 误差(即残差补偿)特征
    现以Jacobi迭代为例, 分解系数矩阵$A$, 式(\ref{eq_1})转换为
    \begin{equation}
    (L + D + U)x = b
    \label{eq_5}
    \end{equation}
    其中, $L$、$D$、$U$分别为系数矩阵$A$的下三角矩阵、对角矩阵及上三角矩阵. Jacobi迭代公式表示如下:
    \begin{equation}
    x^{k+1} = Jx^k + D^{-1}b
    \label{eq_6}
    \end{equation}
    其中, $J = -D^{-1}(L + U)$, 代表Jacobi迭代矩阵. 定义第$k$步迭代误差:
    \begin{equation}
    e^k = x^k - x
    \label{eq_7}
    \end{equation}
    根据式(\ref{eq_6})可知, 迭代误差满足如下条件:
    \begin{equation}
    e^{k+1} = Je^k
    \label{eq_8}
    \end{equation}
    结合上式, 对矩阵$J$进行特征分解, 则有
    \begin{equation}
    e^k = V\Lambda^kV^{-1}e^0
    \label{eq_9}
    \end{equation}
    其中, 矩阵$V$和$\Lambda$分别由矩阵$J$的本征矢和本征值组成. 显然, Jacobi迭代的收敛性由相应迭代矩阵的本征值决定. 若矩阵$J$所有本征值绝对值均小于1, 则Jacobi迭代收敛; 否则, 不收敛.
    现以有限差分法离散化1维Poisson's equation($\Delta u = f$)为例, 采用Jacobi迭代求解该线性系统, 并分析误差成分:
    \begin{equation}
    \begin{split}
    A &= \begin{bmatrix}-2 & 1 &  &  \\  1 & \ddots & \ddots &  \\ & \ddots & \ddots & 1  \\ &  & 1 & -2 \end{bmatrix} \frac{1}{\Delta x^2}   \\
    D &= -2I\frac{1}{\Delta x^2}  \\
    L + U &= \begin{bmatrix} 0 & 1 &  & \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & 0 \end{bmatrix} \frac{1}{\Delta x^2}   \\
    J &= \begin{bmatrix} 0 & 1/2 &  & \\ 1/2 & \ddots & \ddots & \\ & \ddots & \ddots & 1/2 \\ & & 1/2 & 0 \end{bmatrix}
    \end{split}
    \label{eq_10}
    \end{equation}
    矩阵$J$之本征矢与本征值分别为:
    \begin{equation}
    \begin{split}
    V_{ij} &= \sin\frac{ij\pi}{n+1}   \\
    \lambda_j &= \cos\frac{j\pi}{n+1}
    \end{split}
    \label{eq_11}
    \end{equation}
    其中, $i$、$j$取$[1, n]$之间的整数. 显然, 矩阵$J$之本征值$\lambda \in (-1, 1)$, Jacobi迭代在该线性系统上收敛.
    观察本征矢取值, 当$j$逐渐增大时, 频率逐渐升高. 由此可将误差大致分为低频组分与高频组分. 低频组分, 误差分布平滑, 利于近似表达; 高频组分, 误差分布不平滑, 不利于近似表达.
    观察本征值取值, 当$j$逐渐增大时, 其变化趋势为: $1 \rightarrow 0 \rightarrow -1$. 低频部分, 误差收敛速度慢; 中频部分, 误差收敛速度快; 高频部分, 误差收敛速度慢.
    对于低频部分, 误差分布平滑, 可采用向下插值技术将离散点上的残差由精细网格过渡至粗糙网格(即降低$n + 1$的取值), 以提升误差组分的频率, 达到快速收敛之目的, 再由向上插值将离散点上的误差由粗糙网格过渡至精细网格, 获取一个可以接受的残差补偿; 对于中频部分, 误差收敛速度快, 无需特殊处理; 对于高频部分, 由于误差收敛速度慢且分布不平滑, 需要引入under-relaxation技术.
    Part Ⅲ: under-relaxation技术
    结合式(\ref{eq_6}), 采用如下凸组合改写Jacobi迭代:
    \begin{equation}
    x^{k+1} = (1 - \alpha)x^k + \alpha [-D^{-1}(L + U)x^k + D^{-1}b], \quad \text{where }\alpha \in (0, 1)
    \label{eq_12}
    \end{equation}
    根据式(\ref{eq_7})之定义, 误差方程转换如下:
    \begin{equation}
    e^{k+1} = [(1 - \alpha )I - \alpha D^{-1}(L + U)]e^k
    \label{eq_13}
    \end{equation}
    此时, 迭代矩阵及其本征值分别为:
    \begin{equation}
    \begin{cases}
    J_\alpha = (1 - \alpha)I - \alpha D^{-1}(L + U)   \\
    \lambda_\alpha = 1 - \alpha + \alpha\lambda
    \end{cases}
    \label{eq_14}
    \end{equation}
    根据式(\ref{eq_11}), 本征值具体取值为:
    \begin{equation}
    \lambda_j^\alpha = 1 - \alpha + \alpha \cdot \cos\frac{j\pi}{n+1} \in (1 - 2\alpha, 1)
    \label{eq_15}
    \end{equation}
    若$\alpha = 0.5$, 则本征值取值区间为$(0, 1)$. 此时已成功消除分布不平滑且收敛速度慢的误差组分, 使Jacobi迭代在多重网格上求解Poisson's equation时快速收敛.
  • 代码实现:
    Part Ⅰ:
    现以Poisson's equation为例进行算法实施, 原始图像、Laplace变换图像及边界条件图像分别如下方左、中、右三图所示:

    Part Ⅱ:
    Multigrid实现如下:
      1 # 多重网格法求解Poisson's equation
      2 
      3 import copy
      4 import numpy
      5 from PIL import Image
      6 from matplotlib import pyplot as plt
      7 from matplotlib import animation
      8 
      9 
     10 
     11 def get_F(picName):
     12     '''
     13     根据图片数据获取Poisson's equation等式右侧值
     14     '''
     15     img = Image.open(picName)
     16     arr = numpy.array(img).astype(float)
     17     img.close()
     18     
     19     dx = 1 / (arr.shape[1] - 1)
     20     
     21     F = numpy.zeros(arr.shape)
     22     for i in range(1, F.shape[0]-1):
     23         for j in range(1, F.shape[1]-1):
     24             F[i, j] = ((arr[i-1, j] + arr[i+1, j] + arr[i, j-1] + arr[i, j+1]) - 4 * arr[i, j]) / dx ** 2
     25     return F
     26 
     27 
     28     
     29 def get_B(picName):
     30     '''
     31     根据图片数据获取Poisson's equation边界条件, 非边界值填充0
     32     '''
     33     img = Image.open(picName)
     34     B = numpy.array(img).astype(float)
     35     img.close()
     36     B[1:-1, 1:-1] = 0
     37     return B
     38 
     39 
     40 
     41 def jacobi(U, F):
     42     '''
     43     Jacobi迭代法求解Poisson's equation: ΔU = F
     44     U: 迭代解初始值, 含边界条件
     45     F: Poisson's equation右侧值, 边界值无效
     46     横轴长度固定取1
     47     '''
     48     dx = 1 / (U.shape[1] - 1)
     49     UNew = copy.deepcopy(U)
     50     for i in range(1, UNew.shape[0]-1):
     51         for j in range(1, UNew.shape[1]-1):
     52             UNew[i, j] = (U[i-1, j] + U[i+1, j] + U[i, j-1] + U[i, j+1] - dx ** 2 * F[i, j]) / 4
     53     return UNew
     54 
     55 
     56     
     57 class Multigrid(object):
     58     '''
     59     多重网格法之实现
     60     '''
     61     def __init__(self, B, F, alpha=0.5):
     62         self.__B = B                # 边界条件, 矩阵非边界值无效
     63         self.__F = F                # Poisson's equation等式右侧
     64         self.__alpha = alpha        # under-relaxation凸组合因子
     65         
     66         self.__UList = list()       # 记录每帧迭代解
     67         
     68         
     69     def get_solu(self):
     70         return self.__UList
     71         
     72         
     73     def optimize(self, maxIter=3000, epsilon=1.e-1):
     74         '''
     75         maxIter: 最大迭代次数
     76         epsilon: 收敛判据, 迭代解趋于稳定则收敛
     77         '''
     78         self.__UList.clear()
     79         
     80         U0 = copy.deepcopy(self.__B)
     81         F0 = copy.deepcopy(self.__F)
     82         alpha = self.__alpha
     83         
     84         self.__UList.append(numpy.rint(U0).astype("int"))
     85         for idx in range(maxIter):
     86             R0 = self.__calc_residual(U0, F0)
     87             R0Norm = numpy.linalg.norm(R0)
     88             print("iterCnt: {:3d},   ResidualNorm: {}".format(idx, R0Norm))
     89             if R0Norm <= epsilon:
     90                 break
     91             
     92             U0 = self.__do_multigrid(U0, F0, alpha)
     93             self.__UList.append(numpy.rint(U0).astype("int"))
     94             
     95         return U0
     96         
     97     
     98     def __do_multigrid(self, U0, F0, alpha):
     99         # pre-smoothing
    100         Uf = self.__smoothing(U0, F0, alpha, 10)
    101         Rf = self.__calc_residual(Uf, F0)                     # 残差计算
    102         # downward interpolation - find grid to coarse grid
    103         Rc = self.__downward_interpolate(Rf)                  # 向下插值 - 残差计算
    104         deltaU0 = numpy.zeros(Rc.shape)
    105         if (Rc.shape[0] >= 5 and Rc.shape[1] >= 5):
    106             deltaUc = self.__do_multigrid(deltaU0, Rc, alpha)
    107         else:
    108             deltaUc = self.__smoothing(deltaU0, Rf, alpha, 10)
    109         # upward interpolation - coarse grid to fine grid
    110         deltaUf = self.__upward_interpolate(deltaUc, Uf)      # 向上插值 - 残差补偿计算
    111         Uf += deltaUf
    112         # post-smoothing
    113         U0 = self.__smoothing(Uf, F0, alpha, 10)
    114         return U0
    115             
    116             
    117     def __upward_interpolate(self, deltaUc, Uf):
    118         deltaUf = numpy.zeros(Uf.shape)
    119         deltaUf[2:-2:2, 2:-2:2] = deltaUc[1:-1, 1:-1]
    120         deltaUf[1:-1:2, 2:-2:2] = (deltaUf[0:-2:2, 2:-2:2] + deltaUf[2::2, 2:-2:2]) / 2
    121         deltaUf[:, 1:-1:2] = (deltaUf[:, 0:-2:2] + deltaUf[:, 2::2]) / 2
    122         return deltaUf
    123             
    124             
    125     def __downward_interpolate(self, Rf):
    126         '''
    127         向下插值 - R中边界值无效
    128         '''
    129         RcOri = Rf[2:-2:2, 2:-2:2]
    130         RcTra = numpy.zeros((RcOri.shape[0]+2, RcOri.shape[1]+2))
    131         RcTra[1:-1, 1:-1] = RcOri
    132         return RcTra
    133     
    134     
    135     def __calc_residual(self, U, F):
    136         '''
    137         残差计算
    138         '''
    139         dx = 1 / (U.shape[1] - 1)
    140         R = numpy.zeros(U.shape)
    141         
    142         for i in range(1, U.shape[0]-1):
    143             for j in range(1, U.shape[1]-1):
    144                 R[i, j] = F[i, j] - (U[i-1, j] + U[i+1, j] + U[i, j-1] + U[i, j+1] - 4 * U[i, j]) / dx ** 2
    145         return R
    146             
    147             
    148     def __smoothing(self, U, F, alpha, iterNum=5):
    149         for idx in range(iterNum):
    150             U = (1 - alpha) * U + alpha * jacobi(U, F)       # under-relaxation
    151         return U
    152         
    153 
    154 
    155 class MultigridPlot(object):
    156 
    157     fig = None
    158     ax1 = None
    159     line = None
    160     txt = None
    161     UList = None
    162     
    163     @classmethod
    164     def plot_ani(cls, mgObj):
    165         mgObj.optimize()
    166         
    167         cls.UList = mgObj.get_solu()
    168         cls.fig = plt.figure(figsize=(5, 4))
    169         cls.ax1 = plt.subplot()
    170         cls.line = cls.ax1.imshow(cls.UList[0], cmap="gray")
    171         cls.txt = cls.ax1.text(x=100, y=100, s="")
    172         
    173         ani = animation.FuncAnimation(cls.fig, cls.update, frames=numpy.arange(len(cls.UList)), blit=True, interval=1000, repeat=True)
    174         
    175         cls.ax1.xaxis.set_visible(False)
    176         cls.ax1.yaxis.set_visible(False)
    177         cls.fig.tight_layout()
    178         ani.save("plot_ani.gif", writer="PillowWriter", fps=3, dpi=1000)
    179         plt.close()
    180     
    181     
    182     @classmethod
    183     def update(cls, frame):
    184         cls.line.set_data(cls.UList[frame])
    185         cls.txt.set_text("iterCnt: {}".format(frame))
    186         return cls.line, cls.txt
    187         
    188         
    189     @staticmethod
    190     def plot_fig(mgObj):
    191         U = mgObj.optimize()
    192         img = Image.fromarray(U).convert("L")
    193         img.save("plot_fig.png")
    194         img.close()
    195         
    196 
    197 
    198 if __name__ == "__main__":
    199     picName = "./telescope-gray.jpg"
    200     F = get_F(picName)
    201     B = get_B(picName)
    202     
    203     img = Image.fromarray(F).convert("L")
    204     img.save("F.png")
    205     img.close()
    206     
    207     img2 = Image.fromarray(B).convert("L")
    208     img2.save("B.png")
    209     img2.close()
    210     
    211     mgObj = Multigrid(B, F)
    212     MultigridPlot.plot_fig(mgObj)
    213     # MultigridPlot.plot_ani(mgObj)
    View Code
  • 结果展示:
    显然, 通过Multigrid方法, 根据中间Laplace变换图像及右侧边界条件图像即可实现对左侧原始图像的快速求解, 迭代速度较常规迭代方法(Jacobi迭代、Gauss-Seidel迭代等)提升明显.

  • 使用建议:
    ①. 适用于结构化网格, 计算过程在精细网格与粗糙网格间多次变换;
    ②. 适用于求解椭圆型方程, 尤其是线性椭圆型方程.

  • 参考文档: 
    Numerical Methods for PDE 2016 by Professor Qiqi Wang & Jacob White from MIT

发表评论

0/200
344 点赞
0 评论
收藏